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ABSTRACT

The Cyclone Center project maintains a website that allows visitors to answer questions based on tropical

cyclone satellite imagery. The goal is to provide a reanalysis of satellite-derived tropical cyclone characteristics

from a homogeneous historical database composed of satellite imagerywith a common spatial resolution for use

in long-term, global analyses. The determination of the cyclone ‘‘type’’ (curved band, eye, shear, etc.) is a

starting point for this process. This analysis shows howmultiple classifications of a single image are combined to

provide probabilities of a particular image’s type using an expectation–maximization (EM) algorithm. Analysis

suggests that the project needs about 10 classifications of an image to adequately determine the storm type. The

algorithm is capable of characterizing classifiers with varying levels of expertise, though the project needs about

200 classifications to quantify an individual’s precision. The EM classifications are compared with an objective

algorithm, satellite fix data, and the classifications of a known classifier. The EM classifications compare well,

with best agreement for eye and embedded center storm types and less agreement for shear and when con-

vection is too weak (termed no-storm images). Both the EM algorithm and the known classifier showed similar

tendencieswhen compared against an objective algorithm. TheEMalgorithmalso faredwell when compared to

tropical cyclone fix datasets, having higher agreement with embedded centers and less agreement for eye im-

ages. The results were used to show the distribution of storm types versus wind speed during a storm’s lifetime.

1. Introduction

The best track data record is important for many appli-

cations, one of which is understanding how tropical cy-

clones could be changing over time. Tropical cyclone

observations have changed through time, leading to

changes in how best tracks were constructed, which is

summarized by Knapp et al. (2010). Best track data are

constructed differently in different basins. Even agencies in

the same basin construct intensity records in different ways

(Knapp andKruk 2010; Knapp et al. 2013; Ren et al. 2011).

Kossin et al. (2013) summarize many of the causes of dif-

ferences in best track data, which can be generalized as

changes in observations [like the cessation of aircraft re-

connaissance (Martin and Gray 1993) or newer satellites],

improved understanding of storms [e.g., advances in wind–

pressure relationships (Knaff and Zehr 2007)], enhanced

tools [such as improvements to automated analysis tech-

niques (Velden et al. 2006b)], and advances in technology

[for instance, when digital satellite analysis replaced paper

faxes (P. Caroff 2009, personal communication)]. For
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instance, the end of aircraft reconnaissance in the western

North Pacific significantly impacted typhoon analysis.

Changes in typhoon activity have been widely debated

(Emanuel 2005;Webster et al. 2005;Wuet al. 2006). Prior

to the end of reconnaissance, the best track datasets

showed more agreement (Knapp et al. 2013). However,

after reconnaissance ended, the record became almost

completely dependent on satellite analysis, which dif-

fered between agency (Nakazawa and Hoshino 2009).

Thus, a uniform or homogenous best track record is

needed to truly understand how tropical cyclone in-

tensity, frequency, or distribution may be changing.

A homogenous record could be derived from experts

using the Dvorak analysis technique. It is generally un-

derstood that expert operational tropical analysts are

highly proficient at estimating tropical cyclone intensity

from IR imagery; however, it is unrealistic to assign an

expert or a few experts the task of going back through

35 years of satellite imagery to create a more homoge-

neous record. So, in lieu of this, we use crowdsourcing to

provide a homogeneous analysis. This estimate must

indeed be based on quantity to provide quality, which is

the fundamental concept motivating crowdsourcing.

Cyclone Center is a citizen science project designed to

provide the best possible reanalysis of satellite-derived

tropical cyclone characteristics from a homogeneous

historical database composed of infrared satellite im-

agery with a common spatial resolution for use in long-

term, global analyses. Hennon et al. (2015) provide

more information on the purpose, background, and

scope of the project. The project asks visitors to the

website (http://www.cyclonecenter.org/) a series of ques-

tions that they can answer based on historical tropical

cyclone satellite imagery; thus, it is not meant as a means

for real-time operational analysis. The resulting data

from this analysis (or the project in general) should not

replace any best track databases; instead, it could inform a

future reanalysis of tropical cyclone data.

Numerous classifiers provide information for each

satellite image. The work herein attempts to derive in-

formation about an image using the (sometimes) dis-

parate answers from the various classifiers. While the

project asks numerous questions that should help

gauge a storm’s intensity, the following analysis in-

vestigates just one question: what type of cloud pattern

(eye, curved band, etc.) is apparent in the image?

The goals of this paper are to show the following:

1) the accuracy and consistency of classifiers, while

identifying which storm types have more precision;

2) that the resulting derived storm types agree with the

conceptual idea of what that storm type represents;

and

3) that the distribution of storm types in time and space

is conceptually sound.

Such an analysis—determining storm type—will allow

further analysis of Cyclone Center data, where more

detailed information is provided for each storm type.

Therefore, the goal herein is not to derive a storm in-

tensity, but to investigate if the storm type information is

consistent with (i) other data and (ii) reality such that it

can be used in future analysis that investigates storm

intensity. Based on the positive results, the relationships

of storm types during a storm’s lifetime are quantified.

2. Data

a. Cyclone Center data

The Cyclone Center (CC) website presents satellite

imagery [derived from Hurricane Satellite (HURSAT)

data from Knapp and Kossin (2007)] and asks a series of

questions for each image that can provide information on

storm intensity. The answers to these questions are re-

corded and provided to theCC science team.However, the

identity of specific classifiers in the ensuing discussion is

kept anonymous. The questions on the website are similar

to the type of analysis described in the Dvorak technique

(Dvorak 1984; Velden et al. 2006b). While this approach

applies the Dvorak technique globally, tendencies and

dependencies identified byVelden et al. (2006a) andKnaff

et al. (2010) can be accounted for in postprocessing (de-

pendencies on storm translation speed, latitude, etc.).

To determine the storm type (or pattern) from multiple

classifications, we analyze each classifier’s selection from a

set of canonical imagery when asked to ‘‘pick the cyclone

type, then choose the closest match.’’ This request ad-

dresses the concept of the cloud patterns and derives from

whatDvorak calls the patternTnumber. The classifications

used for this study of cyclone types are shown in Fig. 1,

which shows the CC canonical images for curved band

(CBD), embedded center (EMB), eye (EYE), and shear

(SHR) storms. Also, two other categories are included that

classifiers can select: no storm (NS) and posttropical (PT).

The CC data used here are from all classifications

through 13 September 2015, which represents nearly 3

full years of project data (which started on 26 September

2012). In total, there are 483 334 image classifications

from about 26 000 unique individuals. These classifica-

tions are of 92 672 storm images from 1704 tropical cy-

clones. This represents first steps toward the goal of

completing the entire HURSAT record of storms.

Figure 2 shows the distribution of classifications from

project participants. Most people in the project have few

classifications. The two most active classifiers have more

than 20 000 classifications; conversely, there are about
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10 000 classifiers with 1 classification. The challenge,

then, is to extract information for each image from

multiple classifications when each classifier is unknown

and most of the classifiers have few classifications.

b. Comparison data

Storm types derived from citizen science classifications

are compared to three sources of tropical cyclone data.

The advanced Dvorak technique (ADT) is an objec-

tive algorithm derived for operational analysis of trop-

ical cyclone imagery (Olander andVelden 2007). It has a

long history of development (Velden et al. 2006b) but

was only recently applied to the HURSAT dataset

(ADT-H) by Kossin et al. (2013). The result is an

objective estimation of TC intensity for the entire

HURSAT period. One of the products of ADT-H is

a characterization of storm type. This will be compared

with the storm type derived from the algorithm de-

scribed below. This should not be confused with the

operational ADT output used by forecasters in their

analysis; the operational ADT product uses different

input data (e.g., higher-resolution infrared satellite

FIG. 1. Canonical images used by the Cyclone Center website (CycloneCenter.org) for classification categories used herein.
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imagery) and continues to evolve toward higher accu-

racy [e.g., by incorporating satellite microwave imagery

(Olander and Velden 2012)].

Professional analysts record tropical cyclone esti-

mates of position and intensity (or tropical cyclone

‘‘fixes’’) from several different data sources: aircraft

reconnaissance, satellite analysis, radar observations,

etc. The data are recorded by the Automated Tropical

Cyclone Forecast system (Sampson and Schrader 2000)

as comma delimited files. The fix data used herein come

from the Tropical Analysis Forecast Branch within the

National Hurricane Center, the Satellite Analysis

Branch within the National Environmental Satellite,

Data, and Information Service (NESDIS), and the Joint

Typhoon Warning Center, where the results of the

Dvorak analysis by tropical meteorologists are re-

corded. While the storm type is not recorded for each

Dvorak analysis, comments are often recorded that

document some of their process, which can include in-

formation on storm type.

Last, the classifications from a known classifier are

used for comparison. These classifications represent the

input of one of the authors, a meteorologist with an

understanding of tropical systems, experienced with

storm analysis at a forecast center, who is motivated to

help the project succeed and has been trained in the

Dvorak technique. Classifications from this classifier are

denoted as user ‘‘Oscar.’’ Since classifiers are presented

storm images randomly and without knowledge of the

responses from others and the classifications fromOscar

are not used in any of the expectation–maximization

(EM) algorithm calculations, the resulting comparisons

between the crowd and Oscar are independent.

3. Combining input using crowdsourcing
algorithms

One of the primary tenets of crowdsourcing is that

multiple answers to a question are more informative

than one answer (Cox et al. 2015). An algorithm that

learns tendencies of the classifiers is required because

(i) Users are rarely unanimous in their assessment

of an image’s storm type. Only 1% of images with

10 classifications have unanimous storm type

selections.

(ii) Imagery does not always receive a plurality for a

given type. Only 40% of images with 10 classifica-

tions have one type that gets more than half of

the votes.

(iii) Users have varying capabilities in recognizing and

discerning storm types. Similarly, users have vary-

ing motives in answering questions correctly.

The approach taken here follows Raykar et al. (2009)

and Raykar et al. (2010), which account for the condi-

tions above: when classifications disagree and when

users have varying skill in their classifications. They

describe an EM algorithm, which we adopt here to it-

eratively determine the storm type and the tendencies

(e.g., specificity) of the classifier, following their modi-

fications for classifications without features and modi-

fying the approach formulticlass (nonbinary)models for

the six categories of storm types.

a. Algorithm description

The goal herein is to determine the true type classifi-

cation c of some image i. While c is unknown, multiple

classifications of it exist from several classifiers j. Every

image is classified Ri times by different classifiers, where

each classifier selects class k 2 [1, K] (for a K-class al-

gorithm). A single classification is represented by yj
i 5 k,

which described the jth classifier classifying image i as

the kth type. The goal of the algorithm is to characterize

the type that has largest probability (mic) of being the

true class. The algorithm is a three-step algorithm.

FIG. 2. Distribution of (top) the number of classifications from

each classifier and (bottom) the total number of classifications

made based on how many classifications a classifier made.
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First, the probability that image i is type k is initialized

with simple majority voting via

m
ik 5

�
Ri

j51

d(yji, k)

R
i

, (1)

where d(yj
i, k)5 1 if yj

i 5 k and is 0 otherwise.

Second, each classifier can be characterized using the

matrix Aj 5 [a j
ck], where the individual elements are

a
j
ck 5Pr[yj 5 k j y5 c] . (2)

The sum of each column is 1 (i.e.,�K

k51a
j
ck 5 1), since aj

ck

represents the probability that classifier j will assign a

storm type k to an image given that the true storm type is

c. This is calculated for Cyclone Center classifiers using

a
j
ck 5

g
1,ck

1 �
Nj

i51

m
ik
d(yji, k)

g
1,ck

1 g
2,ck

1 �
Nj

i51

m
ik

, (3)

WhereNj is the number of classifications from a classifier

and G1 5 [g1,ck] and G2 5 [g2,ck] are matrices of the beta

prior distributions of Aj, whose derivation is discussed

below. The summation terms in Eq. (3) are similar to

Eq. (1), but instead of summing each classifier for one

image, it sums all classifications from one classifier. The

mik factor acts as a weight that is maximized when y
j
i 5 k

(i.e., the classifier selects k) and mik 5 1 (i.e., the image is

most likely type k). For classifiers with few classifications

(Nj is small) the beta priors provide an a priori estimate.

The influence of this beta prior decreases asNj increases.

Third, the probability of an image being a type k (mik) is

calculated by combining the prevalence of each type (pc):

p
c
; p

k
5
�
N

i51

m
ik

N
, (4)

where N is the total number of images, with the proba-

bility from each classifier that an image is of type c (aic):

a
ic
5Pr[y

i
5 c]5P

Ri

j51
P
K

k51

(a j
ck)

d(yj
i
,k). (5)

Then

m
ic
5

a
ic
p
c

�
K

c51

a
ic
p
c

. (6)

Calculations of theAj [Eq. (3)] andmic [Eq. (6)] are iterated

until convergence. This produces a final description of each

classifier (Aj) and probabilities for each image (mic), where

the EM-derived storm type satisfies mc 5 maxcmic.

b. Binary classification: Does the storm have an eye?

Before discussing the complete six-class storm type

classification, we present a case study of a binary (i.e.,

two class) analysis: the results of classifying images as

having an eye or not. This instructive example demon-

strates the learning algorithm outlined above.

One of the more discernable features in a tropical

cyclone is when the system has an eye in the infrared

satellite imagery (as will be shown below). The following

presents a simplified analysis of the data (K5 2), where

classifiers that select any of the canonical eye images

(Fig. 1) are categorized as ‘‘eye storm’’ (k 5 1), and all

other images in Fig. 1 are classified as ‘‘non-eye storm’’

(k 5 0). The result is the probability that a storm image

has an eye. When the algorithm is complete, each clas-

sifier j is characterized by Aj. Since the perfect classifier

would be the identity matrix, classifiers are ranked using

trace(Aj), which sums the diagonal elements. The best

active classifier (i.e., who has more than 300 classifica-

tions and 25 or more eye images) is Foxtrot, with

Aj5Foxtrot 5

c5 0 c5 1�
0:992 0:001

0:008 0:999

�
k5 0

k5 1

.

So when the algorithm found no eye (590 occurrences),

Foxtrot agreed 99.2% of the time. Conversely, Fox-

trot’s eye classification matched the EM algorithm on

all 118 eye storms classified (n.b., the probabilities are

limited to the range 0.001 and 0.999 to avoid numerical

singularities in implementation). The worst active

classifier (same criteria as above) is classifier Tango:

Aj5Tango 5

�
0:995 0:798

0:005 0:202

�
.

In this case, Tango was good at identifying storms

without an eye (99.5% of the time). However, when the

algorithm resulted in an eye storm, Tango only selected

the eye type about 20%of the time.Nonetheless, Tango’s

contributions are still useful since the Aj matrix provides

probabilities based on Tango’s selections. The resulting

classification from the algorithm [Eq. (6)] combines the

probabilities from each classifier [Eq. (3)].

The results of this binary classification are shown for two

cases in Fig. 3. In case 1—Hurricane Ward (1995)—nine

classifiers chose ‘‘no eye’’ while four selected ‘‘eye,’’ one of

the latter included someone with a top 10 ranked Aj
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(i.e., not Foxtrot, but a rank very close to Foxtrot). Thus,

despite being an image for which the majority vote would

be ‘‘no eye’’, the resulting probability is eye (mi 5 0.9998).

Conversely, 11 of 14 classifiers selected an ‘‘eye’’ storm for

case 2—Hurricane Wilma (2005). One of the ‘‘no eye’’ se-

lections came from Tango. In this case, the weight from

Tango’s selection was very small and had little bearing on

the resulting eye probability (mi 5 1.00).

The results of the binary classification are compared

with Oscar and ADT-H in Table 1. The Heidke skill

score (HSS) is used, since it shows skill versus random

selections when HSS . 0; a perfect score is 1. This

comparison uses a subset of all images, which only in-

cludes images with 10 or more classifications that are

over ocean (and thus have valid ADT-H classifica-

tions). When Oscar is compared to each individual

classification (49 336 matchups), HSS is only 0.66. Us-

ing the classification by the majority vote from the in-

dividual classifications increases the skill to 0.82. The

EM algorithm is often the same as the majority, but in

some cases the majority may be affected by a classifier

with lower skill [i.e., smaller values of trace(Aj)]. Thus,

the EM algorithm provides a slight improvement on

skill, increasing HSS to 0.87. The classifications from

Oscar and EM are both compared to the ADT-H,

with both having a skill score near 0.77. Thus, the EM

algorithm in this instance skillfully represents the clas-

sifier Oscar.

c. Storm type analysis: Six-class classifications

The analysis of the binary case (eye vs no eye) can be

extended to storm type, where there are six types (K5 6):

no storm, curved band, embedded center, eye, shear,

and posttropical; Aj is now a 6 3 6 matrix.

Again, the performances of the classifiers are evalu-

ated using trace(Aj). The best active classifier for storm

typing (now selecting from classifiers with 1000 or more

classifications) is Romeo:

Aj5Romeo 5

c5 NS CBD EMB EYE SHR PT2
666664

0:87 0:01 0:00
0:00 0:81 0:16
0:00 0:08 0:77

0:01 0:26 0:03
0:02 0:02 0:06
0:02 0:03 0:00

0:02 0:01 0:02
0:08 0:09 0:05
0:02 0:00 0:00

0:95 0:00 0:01
0:00 0:66 0:36
0:00 0:01 0:54

3
777775

k5NS
k5CBD
k5EMB
k5EYE
k5 SHR
k5PT

.

On average, Romeo agrees with the EM algorithm

nearly two-thirds of the time. Each column sums to one,

showing that a classification from Romeo is actually a

probability of the true type based on Romeo’s selection.

Romeo’s best categories are discerning an eye storm

(agreeing with the EM algorithm 95% of the time) and

no storm (87%). Tango again appears as the worst active

classifier in the six-class algorithm as well:

FIG. 3. Images from Cyclone Center for (left) Hurricane Ward (1995) at 0900 UTC 19 Oct 1995 and (right)

Hurricane Wilma (2005) at 0300 UTC 21 Oct 2005.
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Aj5Tango 5

2
66666664

0:02 0:01 0:00

0:22 0:34 0:34

0:02 0:01 0:13

0:00 0:00 0:03

0:23 0:26 0:14

0:17 0:07 0:01

0:00 0:00 0:01

0:72 0:64 0:52

0:02 0:00 0:00

0:21 0:00 0:00

0:39 0:67 0:81

0:00 0:00 0:02

3
77777775
.

Tango agrees with the EMalgorithm less than 1 in 4 times

and shows a significant bias toward selecting shear scenes.

No matter the true type (column), the type Tango is most

likely to select is SHR.Both Tango andRomeo hadmore

than 1000 classifications. Clearly from Fig. 2, very few

classifiers have this many classifications. So how many

classifications does one need to adequately understand

their tendencies (i.e., calculate an accurate Aj)?

d. Prior distributions—Characterizing classifiers with
few classifications

About half of all classifiers have fewer than 3 classifi-

cations, totaling more than 23000 classifications (cf.

Fig. 2). These are too few to accurately calculate Aj, so a

prior distribution is required. A set of images that had 10

or more classifications was used to calculate the priors;Aj

can then be calculated for the users that contribute to this

set of images and then averaged Aj to estimate the prior.

The mean Aj is

Aj 5

2
66666664

0:47 0:09 0:02

0:25 0:56 0:14

0:05 0:18 0:67

0:02 0:09 0:16

0:11 0:24 0:25

0:21 0:27 0:05

0:01 0:02 0:05

0:14 0:12 0:10

0:08 0:03 0:01

0:60 0:02 0:02

0:05 0:35 0:17

0:01 0:03 0:33

3
77777775
.

The prior is included in Eq. (3) by calculating elements

of the beta priors (G1 and G2) for each element of Aj

following Raykar et al. (2010), where

g
1,ck

5
(2aj

ck
3 1a

j
ck

2

2a
j
cks

2

a
j

ck

)

s2

a
j

ck

(7)

and

g
2,ck

5
g
1,ck

(12a
j
ck)

a
j
ck

. (8)

The overbars and sigma denote the mean and standard

deviation for each element ofAj, respectively.While this

prior helps estimate performance when classifications

are few, howmany classifications are needed to calculate

an accurate Aj for an individual?

The number of classifications needed to fully un-

derstand a classifier is estimated by simulating their

Aj using a subset of their classifications. The number

of classifications in the subset is varied from 1 to 300,

calculating Aj 200 times using a random subset of

classifications. This is compared to the Aj calculated

based on all of their classifications. Results are shown

for two users: Oscar and Tango. Oscar performed

more than 7000 classifications, and Tango (discussed

above) performed ;1400. The results are shown in

Fig. 4.

For Oscar, the a priori aj
ck already explains 75% of

the variance of a with just one classification. This is

important because classifications from Oscar were not

used in deriving the prior distribution, only in this post

comparison. At about 40 and 180 classifications, the

explained variance for Oscar passes 80% and 90%,

respectively. So the prior describes the performance

quite well even when the number of classifications is

small. Conversely for Tango, whose Aj is somewhat of

an outlier (having the lowest score in the group of ac-

tive classifiers), the results show lower explained vari-

ance for fewer classifications. This is because Tango’s

Aj is very different than the prior. So how many clas-

sifications from Tango are needed to recognize that

Tango’s Aj was different? The explained variance

passes similar thresholds (80% and 90%) at 100 and 180

classifications. This suggests that, initially, the algo-

rithm needs more classifications from classifiers with

lower scores to have an accurate Aj than those with

higher scores. However, both Tango andOscar reached

90% explained variance at roughly 180 classifications.

Thus, users with about 180 or more classifications are

well described by their Aj.

e. How many classifications of an image are enough?

The goal of crowdsourcing in the Cyclone Center

project is to obtain multiple classifications of an image

from numerous classifiers in order to estimate the true

attributes of an image—in this case, storm type. At the

outset, the CC website collected a large number of

classifications per image as a conservative approach.

TABLE 1. The HSS for various comparisons of the eye vs no-eye

classification. All comparisons are when an image has 10 or more

classifications and when ADT-H classifications are valid (i.e., circula-

tion center is over water), which is 3727 images. However, there are

49 336 comparisons between Oscar and each individual classification.

Test HSS

Oscar vs individuals 0.66

Oscar vs majority voting 0.82

Oscar vs EM algorithm 0.87

Oscar vs ADT-H 0.77

ADT-H vs EM algorithm 0.77
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There are 577 images with 30 or more classifications of

storm type.

Classifications from a subset of these were used to

estimate the number of classifications needed. Storm

types were derived by varying the number of classifi-

cations from 1 to 29. Results were compared to the type

derived from the full set of classifications. The HSS was

used to evaluate the skill for each storm type; the result

is shown in Fig. 5. The general trend is for less skill at

fewer classifications, with HSS approaching 1 at 29

classifications. Near 10 classifications, the HSS values

are above 0.9 and above that slowly approach 1. There

is some dependence of HSS on storm type. For in-

stance, the eye storm types appear to reach maximum

HSS values with only 6 classifications, while the post-

tropical storm type begins with no skill (HSS , 0), and

shear has the lowest skill at 10 classifications. Given

these results, 10 classifications appear to be a sufficient

number to determine most storm types, though more

classifications could be needed for types with less cer-

tainty (e.g., posttropical).

To analyze the consistency of this result, we compared

the EM algorithm classifications for images with more

than 20 classifications (Typefull) with simulated 10-member

subsets for each image (Type10, subsetting each image

10 times), creating 18 560 matchups between an image

with 20 or more classifications to just those using the

10-classification subset. The results are provided in

Table 2. The classifications of storm type agree;95% of

the time. The skill scores for each type are more than

0.87, the eye type having the largest skill score of 0.97. The

highest errors (i.e., off-diagonal values) represent confu-

sion between embedded centers and other types, but even

those are small percentages of the total for each type.

This suggests that the classification of an image using

input from any 10 people is consistent with 10 other

classifiers for the same image and is also consistent with a

doubling (or more) of the number of classifications.

Therefore, in the following discussion a classification of a

storm type is considered complete when the image re-

ceives 10 or more classifications. It is also possible to

identify occurrences when the 10 classifiers have lower

FIG. 5. HSS for each storm type as a function of the number of

classifications used in the EM algorithm.

TABLE 2. Demonstration of consistency in classifications

through comparisons between classifications of images with 20 or

more classifications (Typefull) and 10-member random subsets of

those full sets (Type10) with the HSS for each type.

Type10

NS CB EMB EYE SHR PT N

Typefull NS 0.95 0.02 0.00 0.00 0.01 0.01 1770

CB 0.02 0.93 0.03 0.00 0.02 0.00 5190

EMB 0.00 0.02 0.96 0.00 0.02 0.00 7750

EYE 0.00 0.00 0.04 0.96 0.00 0.00 1510

SHR 0.01 0.03 0.02 0.00 0.93 0.00 1780

PT 0.02 0.02 0.00 0.00 0.03 0.94 560

HSS 0.94 0.92 0.94 0.97 0.87 0.94

FIG. 4. Simulated explained variance of a classifier’s Aj as

a function of the number of classifications, where 200 simulations

were made for each number of classifications. The mean explained

variance (black) and the 25th and 75th percentiles (gray) are shown

for two users: (top) Oscar and (bottom) Tango.
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skill and reintroduce those images into the system for

more classifications.

f. Assessing algorithm performance

The EM algorithm described above produces a char-

acterization of storm type for each image with 10 or

more classifications. An example of the resulting type is

provided in Fig. 6 for Hurricane Katrina (2005) in the

North Atlantic Ocean. The analysis shows the various

individual selections (bottom plot). The EM algorithm

converts the individual classifications—using the ten-

dencies of each classifier from Aj—to estimate the

probabilities of each image’s storm type. The analysis

classifies Katrina prior to landfall in Florida as oscillat-

ing between curved band and embedded center. As the

storm emerges from Florida over the Gulf of Mexico,

the system remains an embedded center. A brief hint of

an eye is noted just prior to day 4, then an eye emerges

near day 5, which lasts until landfall. The storm quickly

dissipates over land into posttropical-type images over

Mississippi and Tennessee. It should be noted that the

EM algorithm operates on each image independently

without any prior information on the storm type of

nearby times. The EM algorithm reduces the noisiness

of the numerous individual storm type selections in the

bottom panel into a smooth, interconsistent set of storm

types in the top panel. There are some outlier classifi-

cations in the first 4 days (with some classifiers selecting

eye and shear early on); nonetheless, the algorithm se-

lects the highest probability based on the classifications

and the Aj of each classifier.

The analysis of Katrina provides a qualitative confir-

mation of the EM algorithm performance, and the con-

sistency of the analysis (e.g., Table 2) provides assurance

that the process is repeatable. The following analy-

sis provides quantitative analysis where we compare the

FIG. 6. EM algorithm results for storm types based on imagery from Hurricane Katrina (2005) in the North

Atlantic. (bottom) The percentages of the raw classification with the resulting EM probabilities above it. (top) The

map plots the storm type along the track of the system at approximately 3-h intervals.
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results of the EM algorithm to three other datasets de-

scribed earlier: a known user (Oscar), ADT-H, and fix

data. The results of the comparison are shown in Fig. 7.

1) COMPARISONS WITH A KNOWN CLASSIFIER

The comparisons between classifications from Oscar

and those from the EM algorithm (for images with 10 or

more classifications) are provided in Fig. 7a. As a re-

minder, these classifications are not used in the above

calculations of Aj or the priors, so they are an indepen-

dent verification. The maximum percentage in each row

agrees with Oscar. The type with the most agreement

(and highest skill) is eye types (HSS5 0.87).While there

is much agreement between Oscar and EM on post-

tropical systems (78%), lower skill (HSS 5 0.52) is

caused by the EM algorithm classifying many of Oscar’s

no-storm types as posttropical, resulting in lower skill

for no-storm types (HSS5 0.46). This is attributed to the

condition that the convection has been largely trans-

ported away from the circulation center during the

posttropical stage and can appear like no storm is

present. There is some agreement for the curved band

and embedded center types (HSS values of 0.45 and

0.59, respectively), but some overlap as well (e.g., the

EM algorithm flags 19%ofOscar’s embedded centers as

curved bands). The lowest skill is found in the shear type

(HSS 5 0.14), which is marginally skillful. For the im-

ages classified by Oscar as shear, the EM algorithm

agrees 40% of the time but also has large fractions for

curved band (22%) and embedded center (19%).

Nonetheless, classifications for each type are skillful.

2) COMPARISON WITH ADT-H

We compare the ADT-H types to both the EM algo-

rithm and the classifications from Oscar for perspective.

It is worth repeating here that the ADT-H results are

not the operational ADT product, but the same algo-

rithm applied to the lower-resolutionHURSATdataset.

The comparisons between the EM algorithm and

ADT-H are provided in Fig. 7b. The ADT-H has many

of the same storm types with the addition of central

dense overcast (CDO) and irregular CDO (IrrCDO),

which are combined in Figs. 7b and 7c as EMB/CDO.

The number of classifications here is much larger since

there is an ADT-H value for all images (except for when

the storm center is over land). The skill is not calculated

since there is not a one-to-one matchup with EM types.

The ADT-H curved band types are classified correctly

48% of the time. Since the ADT-H has no no-storm

classification, 11% of the curved band systems were

called no storm by the EM algorithm (similarly, 21% of

shear systems were called no storm by the EM). The

ADT-H embedded center images are largely (70%)

called the same by the EM algorithm, with 19% being

called curved band. There is also high agreement on eye

systems (nearly the same as between EM and Oscar).

Last, the ADT-H shear type appears to be a combination

of two EM types: the no storm and posttropical, since

FIG. 7. Heat map distribution of classifications between two

classification methods, where the values are the percentages of the

total occurrences of that type (which is the number on the right) and

percentages are rounded to integer values for (a) EM algorithm vs

Oscar, (b) EM algorithm vs ADT-H, and (c) Oscar vs ADT-H.
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there is no equivalent of the posttropical or no storm in

the ADT-H types. The comparison between the classifi-

cations of Oscar and ADT-H (Fig. 7c) provide perspec-

tive on the EM/Oscar and EM/ADT-H comparisons.

The comparison between ADT-H and the EM algo-

rithm is consistent with the comparison to classifications

fromOscar.Most of the percentages are within610%of

the EM–ADT-H comparisons. Classifications from Os-

car had large agreement for embedded centers. Oscar

identified eye images with slightly more agreement than

the EM algorithm (87% vs 82%). Oscar also showed

similar tendencies to classify ADT-H shear images as

either no storm or posttropical. In summary, while there

is not complete agreement between the ADT-H and the

EM algorithm, there are significant similarities between

the ADT-H comparisons with the algorithm and Oscar.

Thus, it appears that the classifications from the EM

algorithm are consistent with Oscar, and both Oscar and

the EM algorithm are consistent when compared to the

objective ADT-H algorithm.

3) COMPARISON WITH FIX DATA

The comments portions of the fix data often provide

some hint of the storm type. We parsed the comments to

characterize storm type, only using fixes based on the

subjective Dvorak technique. These are largely systems

over the North Atlantic and eastern Pacific. We ignored

any systems that referenced microwave data in the

comments (e.g., ‘‘Center location strongly influenced by

1000 UTC SSMI’’), as that suggests other information

helped with the classification. In general, the same

classes are noted in the fix data as the six Cyclone Center

types, but the fix data denotes many storms as too weak

to classify (TWTC), so we retain that term. It should be

noted, that analysts were working with very different

satellite data. Often, they have access to 1-km visible

imagery (compared to the 8-km imagery in HURSAT)

and other channels (visible imagery, etc.). They also

have access to microwave data, which often affects their

analysis (as noted above).While the times are somewhat

coincident (within 15min), the analysts had access to

more than one satellite image and the ability to animate

images through time and zoom in or out, all of which are

capabilities not available to Cyclone Center classifiers.

There is general agreement between the EM algo-

rithm results and the classifications in the fix data

(Fig. 8), which is consistent with the previous compari-

sons. The TWTC type is classified by the EM algorithm

as no-storm type (33%) or posttropical type (31%), which

is consistent with comparisons to Oscar. The EM algo-

rithm also tends to classify fix data curved bands as em-

bedded centers, but there is much larger agreement on

embedded centers (85%) than in previous comparisons.

Conversely, the eye type has less agreement than in

previous comparisons. This can likely be attributed to the

differences in the underlying satellite imagery available

to the analysts (with the ability to zoom, animate, and

view other satellite imagery) versus the capabilities of the

Cyclone Center website interface (one image, one color

scale at 8-km resolution). Thus, it is understandable that

the EM algorithm only recognizes 65% of the eyes from

the fix data. Again, the shear system has the most con-

fusion, expressed in low values across the board. When

analysts call a system shear, the EM algorithm tends to-

ward curved band (29%), shear (28%), or embedded

center (19%).

Given the success of the algorithm’s performance

versus a known classifier (Oscar), an objective algo-

rithm, and fix data from analysts (when available), we

investigate the distribution of these storm types as de-

termined by the EM algorithm.

4. A climatology of storm types

The climatology of storm types is categorized herein

as the distribution of the storm types, where they occur,

and their relationship to storm evolution. In these cases,

the storm types are compared with maximum sustained

wind speeds that derive from best track data. The wind

speed data are completely independent of the storm

type information derived by the EM algorithm. The best

track data used here are the IBTrACS v03r02 data

(Knapp et al. 2010), fromwhich theHURSATdata were

derived. To avoid discrepancies in wind speed averaging

periods and other practices (Knapp and Kruk 2010;

FIG. 8. As in Fig. 7, but for comparisons between EM and fix

dataset, where the fix category too weak to classify is encoded

TWTC.
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Schreck et al. 2014), we focused on the maximum wind

speed available from all agencies reporting on a storm,

in order to represent the highest likely storm winds at

any time. Winds are reported in the international

standard unit for tropical cyclone intensity of knots

(kt; 1 kt 5 0.5144m s21).

a. Frequency of storm types

The distribution of the EMalgorithm storm types with

the wind speeds from best track are shown in Fig. 9 (in

10-kt increments). This shows no-storm types having a

maximum percentage for the weakest wind speeds, de-

creasing as wind speeds increase and becoming negligi-

ble beyond 50 kt. The curved band types have the largest

percentage at the weakest winds (39%), which also de-

crease in fraction with increasing wind speed. Curved

bands appear associated with stronger winds than no

storms. Curved bands, though, are rare when winds are

above 90 kt. The embedded centers are present at nearly

all wind speeds (though not above 140kt) with a peak

(66%) at 75 kt. The eye type is dominant for images with

wind speeds above 90kt. The eye type is less frequently

observed at lower wind speeds and becomes rare below

50 kt. The shear type has the lowest percentage of the

EM types. It has a maximum at lower wind speeds, is

only present through 80kt, and is never more than 10%

of images at any wind speed. Last, the posttropical type

represents the storm’s transition away from the tropics

and often its cyclolysis. Thus, it peaks in percentage near

45 kt and is not very prevalent above 70 kt. We conclude

that the separate types as classified by EM appear to be

related to best track winds.

Another analysis of storm type is provided in Fig. 10,

where the fractional portions of images are distributed

in time relative to three significant points in a storm’s

lifetime: 1) the storm’s first image (labeled genesis),

2) the first occurrence of its lifetime maximum intensity

(LMI), and 3) the last image of the storm (termed here

cyclolysis). The top plot shows the distribution of storm

types for all available completed storm images; it is then

separated by the type of storm: LMI , 65kt (tropical

storms), hurricanes (65 , LMI , 115 kt), and intense

hurricanes (LMI . 115 kt). The analysis uses all com-

pleted images (19 580), which derive from 692 separate

storms. Not all of these storms are complete, but any

complete image can be placed relative to the three times

listed above.

The overall distribution (Fig. 10, top) shows each

storm type to varying degrees. The no-storm type is

present primarily at the start and near the end of a

storm’s lifetime. The shear type is present for a small

fraction throughout the storm’s life cycle. The largest

fraction of curved bands is at the storm genesis and

decreases with time, while the embedded centers peak

in fraction shortly before LMI, and the eye types show a

sharp peak at LMI. These patterns combine all storm

strengths.

Tropical storms have a small fraction of eye types,

while eyes dominate the intense hurricanes near LMI.

Themaximum fraction of the eye type at any given time

of a storm increases from only 2% for tropical storms to

32% for hurricanes and 80% for intense hurricanes.

This is consistent with Vigh et al. (2012), who charac-

terize the median intensity for initial satellite eye for-

mation around 60 kt. Most storms forming an eye are

reaching hurricane intensity. Curved bands are present

in large percentages for each intensity level. While it

remains a significant fraction throughout a tropical

storm’s lifetime, curved bands disappear near LMI for

intense hurricanes. The shear type is more prevalent

FIG. 9. Distribution of storm type by wind speed, where the storm type is determined from the EM algorithm and

the wind speed is from the best track data. The distribution is based on 19 580 images from 692 individual storms.

Only images with 10 or more classifications are included in this analysis.
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for tropical storms than hurricanes and intense hurri-

canes. Last, the fraction of posttropical type increases

near cyclolysis and appears more frequently for more

intense systems.

The frequency of eye images is further investigated in

Table 3. While numerous storms have a portion of their

images complete (10 or more classifications), few storms

have all their images completed (we define an entire

storm as complete when 80% of a storm’s images are

complete). However, from this small sample it is ap-

parent that more intense storms have significantly more

eye images. All completed intense hurricanes have at

least 1 eye image, with the mean being 25 eye images

(the equivalent of 3 days with an eye). A total of 9 of 13

completed hurricanes had eyes, with about 8 eye images

per hurricane. Only 6 tropical storms are complete, so

the occurrence of one eye image for one of the storms is

not likely statistically significant. Even though there are

few completed images, the resulting distribution of eye

images does shed light on the fraction of eye images by

storm intensity, but clearly more classifications are

needed to draw conclusions.

FIG. 10. As in Fig. 9, but showing storm type distribution by age of the storm at the time of the image relative to

three points: storm genesis, first occurrence of LMI, and storm cyclolysis for (from top to bottom) all storms

(19 580 images of 692 different storms), those storms that only reach tropical storm (TS) strength (5452 images of

398 systems), and so on for hurricanes and intense hurricanes.
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b. Location of storm types

The fraction of storm images complete varies by basin,

so there are not yet enough results to investigate pat-

terns in a specific basin. We can, however, look at the

zonal distribution of storm types, as shown in Fig. 11.

This shows the distribution of types with latitude; the

hemispheric medians are also provided.

The posttropical type is unique, with peaks outside of

the tropics. The other types have their peaks (and their

hemispheric medians) in the tropics. While the distri-

butions are somewhat similar, the medians change in a

logical fashion: types that occur earlier in the storm’s life

cycle (e.g., curved band and embedded center) occur

closer to the equator, while those that occur later are

farther poleward (e.g., eye). The exception is the dis-

tribution of no-storm types. This can be explained by the

proclivity of users to assign both posttropical and no-

storm near the end of a storm’s life (cf. Figs. 7 and 10).

More images are needed to further investigate the spa-

tial distribution of types, but this initial analysis does

show that the types from the EM algorithm match a

conceptual zonal ordering.

c. Evolution of types

Another way to analyze the initial results of the EM

algorithm is in how the storm types change in time,

which is shown in Fig. 12. Each row contains the per-

centage distribution of storm type three hours after the

occurrence of a particular type. For example, about half

of no-storm scenes are followed by no-storm scenes,

with 26% becoming curved bands. Embedded centers,

however, are more likely to remain the same (75%) and

tend to become either curved bands (13%) or eye storms

(7%). It is interesting to see that eyes are really quite

rare: they only follow about 12% of other images. When

they do occur, they tend to happen several images in a

row (82% of eyes are followed by eyes). They also tend

to form mostly out of embedded centers (since 7% of

those create eyes), which are the most prolific eye pro-

ducers (aside from eye storms).

Results were also separated by different storm in-

tensities (hurricanes and intense hurricanes, not shown),

which resulted in minor differences from Fig. 12. How-

ever, intense hurricanes did show a slightly greater

propensity tomaintain eyes (86% vs 82%). Also, 10%of

embedded centers produced eyes (vs 3% for hurri-

canes), which is consistent with all intense hurricanes

having at least one eye image (cf. Table 3).

5. Summary

Initial analysis of storm types from a citizen science

project was described here. The goal of Cyclone Center

is to provide the best possible reanalysis of satellite-

derived tropical cyclone characteristics from a ho-

mogeneous historical database composed of infrared

imagery with the lowest common spatial resolution for

TABLE 3. Frequency of eye images based on storm type, where

completed storms are defined as having 80% or more of their im-

ages complete.

All

storms

Tropical

storm Hurricane

Major

hurricane

Completed storms 57 6 13 38

Completed storms with

1 or more eye scenes

48 1 9 38

Fraction with eye scenes 16% 69% 100%

Mean No. of eye images

when at least 1 is present

1 8 25

FIG. 11. Zonal distribution of storm types. The hemispherical median latitudes for each type are denoted by the horizontal lines.
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use in long-term, global analyses. The goal is to provide

information for a future synthesis of tropical cyclone

data, not to replace any current best track datasets.While

the end goal of the project remains far off, this analysis of

the data, through the determination of the storm type,

reveals some interesting aspects of the project and of

tropical cyclones in general.

A statistical algorithm—called the expectation–

maximization algorithm (EM)—was used to combine

(the sometimes) disparate classifications from numerous

classifiers into a consistent and accurate representation of

the storm type. In the development of the algorithm, we

also determined how many image classifications were

needed (10) as well as how many classifications from a

classifierwere needed to best understand their tendencies

(approximately 180). For users with fewer classifications,

an a priori distribution provides a starting point.

The results of the EM algorithm were compared with

classifications from one of the authors, with an objective

satellite analysis algorithm, and with information from

satellite analysts (via comments in tropical cyclone center

fix data). The results showed that the classifications from

the website visitors—analyzed through the lens of the

EM algorithm—are consistent, with better agreement for

some types (e.g., eye patterns) than others (e.g., shear

pattern). The resulting cursory analysis of storm type

shows how storm types relate to best track wind speeds

in a system and during a storm’s lifetime. While pre-

liminary, the resulting storm types are consistently de-

rived, agree with other means of estimating type, and

should prove useful in further analysis of project data.

For instance, Hennon et al. (2015) showed a simplistic

analysis of Cyclone Center data produced intensities

with a root-mean-square error (RMSE) near 18kt. It is

intended that future analysis canmake use of EM-derived

information from Cyclone Center questions—such as

storm type derived here—to help refine these intensity

estimates toward lower RMSE values.
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